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Abstract 

I have presented a means of getting a representation space of a general linear group of n 
dimensions in terms of homogeneous functions of n, n-dimensional vectors. Except in 
particular cases, the representation is of the Lie algebra, rather than the group. A general 
formalism is set up to evaluate the Casimir operators of the Lie algebra of the group in 
terms of the degrees of homogeneity of the functions (which are eigenfunctions of the 
Casimir operators) in the n variables. It is noticed that the Casimir operators exhibit 
certain symmetries in these degrees of homogeneity which relate different representations 
having the same eigenvalues for the Casimir operators. Contour integral formulas that 
enable one to pass from one such representation to another are presented. An expression 
for the eigenvalues of a general Casimir operator in terms of the degree of homogeneity 
is presented. 

1. Introduction 

The work for this paper arises from some work done on twistors (Penrose, 
1967), based on certain suggestions made by Prof. R. Penrose. Twistors are 
"vectors" of  the representation space of U(2, 2). Now SU(2, 2) is locally 
isomorphic to the 15-parameter conformal group of compactified Minkowski 
space and to 0(2,  4). The results for twistors are analogous to the results for 
two-component spinors - "vectors" of  U(2), SU(2) being locally isomorphic 
to 0(3) .  I have attempted to set up a formalism in which the Casimir operators 
of the Lie algebra of  any linear group can be easily expressed and in fact may 
be read off from a general formula. The results apply equally to unitary and 
other groups, as well as to linear groups. The reason why the Lie algebra is 
used instead of the group will become clear later. The representations will be 
given in terms of multivariable functions that are homogeneous in all the 
variables. The variables are "vectors" of the representation space of the algebra. 
It will be easily seen that the number of variables required is the dimension of 
the representation space. 

The "canonical generators" are defined in terms of  the variables and 
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26 A S G H A R  Q A D I R  

derivatives with respect to those variables. Contractions of the canonical 
generators, among themselves, so that no free indices are left, give the Casimir 
operators. The number of linearly independent Casimir operator is the rank 
of the group. The functions used for getting representations of  the algebra are 
eigenfunctions of the Casimir operators. The original interest in these functions 
was because they tied in with certain expressions for the solutions of the 
zero rest mass field equations (Penrose, 1969). The Casimir operators are 
found to possess certain symmetries using one which can give a general expres- 
sion for the eigenvalues of any Casimir operator of  the Lie algebra of a linear 
group. 

The methods used here are inspired by the method of Gel'fand et aL (1966) 
to get representations of SL(2, C) and of GL(2, C3. 

The paper is presented in the following way. First, representations of  
GL(n, C) are dealt with. Then a theorem is proved for the functions giving 
representations of the Lie algebra of GL(n, C). Then the Casimir operators are 
defined and worked out for GL(2, C), GL(3, C) and GL(4, C). It is observed 
that these Casimir operators possess certain symmetries. It is proved that all 
Casimir operators of the Lie algebra (not of the group) possess this symmetry. 

2. Representations o f  GL(n, CJ 

Consider a functionf(~a), homogeneous of  degree p in a complex n.compo- 
nent vector U, i.e., 

f(A~ a) = APf(~ a ) (2.1) 

In particular, f(~a) might be expressible as a polynomial of degree p in ~a i.e., 

f(~a) = fa. -. c~ a "'" ~c (2.2) 

where fa . . .  c =f(a... c). Suchfa..- c can be represented by the Young tableau 

"( p ~ ;, 

All suchfa. . ,  c'S form a (p + t)-dimensional, irreducible representation space 
for GL(n, C). Such polynomial expressions are nonsingular for all ~a In 
general, however, f(~a) is nonsingular only over some domain, being singular 
somewhere outside that domain. In such a case f(~a) will give a representation 
of the Lie algebra of the group, rather than the group itself, because the domain 
is shifted by the action of the group but is not shifted by the action of the 
algebra. An f(~a) can be constructed such that p is a positive integer, but f(~a) 
cannot be expressed as a polynomial in ~a, e.g., withp = + 1, 

f (~a) = La b ~a~b/g e ~e ( 2 . 3 )  
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cannot be expressed as a polynomial in general. Such functions spap an infinite- 
dimensional representation space of  the Lie algebra of  GL(n, C). I f p  is not 
a positive integer, f (~a)  leads to an irreducible representation space. 

To see that f (~a) gives a representation of  the Lie algebra of  the group, first 
consider two elements of  the group ~]/and - f .  t f  we want to expand close to the 
identity, we can put ~-//= 1 + eU and ~- '= 1 + eT, where e is infinitesimal. Let 
U and T be given by  U :g = uab~ b and T : ~ = T ~  b. Then 

(Rf)(~) = f ( ~ a ) +  eUab~b f/3~a, i .e . ,RF(g) = u ~ b  f /3~ a 

(Rf) (g)  = f(~a) + e T g ~ b 3 f / ~ a ,  i.e., RTF(g ) = T~,~b3f/a~ a 
F 

• (R ° + R)f(~)  = ~b(Ug + Tg)(3f/o~a)(~ c) = ~" (U + T) " (3f/3~)(F 0 

" = ~ (U,~ T;  - TbU~,)(~f /~c)(~ d) 
U T 

= g" (U" T - T"  U) .  (Of/Bg)(~) 

It can easily be checked that these functions satisfy all the requirements of  a 
representation space, the operators being represented by  ~. U .  (B/BE). The 
representation is o f  an algebra, instead of  being of  a group, because the func- 
tion will often be singular for some value of  ~a (for reasons which become 
apparent later). Thus the action of  the group shifts the domain over which 
f (~a)  is nonsingular. Now if the transformations of  ~a are infinitesimal and 
the function is nonsingular over some domain, the transformed function will 
be nonsingular over the same domain. Thus representations of  the algebra are 
valid, but  o f  the group they are not valid. 

I shall now prove a theorem for these functions, taking them to be o f n  
variables for GL(n, C). I shall explain what they represent later. 

Theorem 1: For functions, homogeneous in n (n-dimensional) vari- 
ables W a, X a, . . . ,  Z a, the following statements are equivalent: 
t .  f ( w  a , x ~ ,  . . ., z d ) = f ( w  a + x x  ~ , x ~ . . . . .  z d )  

= f ( w a  + ~ Z  a ,  x b  . . . . .  Z d )  (2.4a) 

2. X a O f ib  W a . . . . .  Z a bf/O W a = 0 (2.4b) 
3. f ( W  a, X b . . . . .  Z d) = g ( w [ a x b . . .  Z a], X k , . . . ,  Z m) (2.4c) 

Proof:" (i) We know that  

(3 /aX) f (W a + XX a, X b . . . . .  Z d) = x e ( a / a w e ) f ( w a  + XX a, X b . . . .  , Z d) 

Now (1) implies that Of/3X = 0. Thus we have x e ( o f / 3  W e) = 0 and similarly 
up to z e ( o f / 3 W  e) = 0. Thus (1) =* (2). 

(ii) Defining Of/3 W a = fa,  we can write la  = Cab... a K b " "  a where 
Kb. . - a  =K(b  .-.d).  Now from (2) we have 

Cab " - . d K b "  " "d x a  . . . . .  C a b .  . . d K b  " " d z  a = 0 

Thus we have 

X[aKb.. .  dl . . . . .  Z[aKb... d] = 0 
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Thus K b ' ' "  ct represents a hyperplane containing the vectors X a . . . . .  Z a . Thus 
K b . . .  a o: X I b ' " Z  d ] .  Now (3) requires that f should be constant when 
W [ a X  t~ . . .  Z al  , W k . . . . .  Z m are constant, i.e., treating W a . . . . .  Z a as the basic 
variables and V any vector defined on the space o f  which W a ,  . . . ,  Z a are the 
coordinates 

V ( W [ a x  b " " " Z d], X k,  . . . , z  m)  = O ~ V f  = 0  

where we write V = V f ( O / O W  a )  + V ~ ( ~ / O X  a )  + . . .  + V a ( O / o z a ) .  This gives us 

( v f  . . . . .  V, )/8 eaX ' "  f J  
. . .  

I wlax%  . . . ZaJ 

 W l a X b  . . .  y ~ a e J  

6e k 0 OX 

0 6 / = 0 ~  " 

o o pI/ ze/ 

for all V, i.e., that the column vector is linearly dependent on the square matrix. 
To see that  (2) implies this, we reduce the matrix by subtracting the appropriate 
multiple of  each later column from the first column, so as to  obtain a diagonal 
matrix with 6's on the diagonal, except for the first term, which is 5 I e a X  b • • • Z a l  

thus we require that whenever (2) is true O f i b  W e is linearly dependent on 
8 [ e a X  a " " • Z d l .  This has already been proved. Thus we can write.f(W a ,  

X b . . . . .  Z d )  = g ( w [ a x  b . . . . .  Z all, X k . . . .  , g i n ) .  Thus (2) =~ (3). 
(iii) Clearly (3) ~ (1), as any arbitrary multiple o f  X a ,  . . . ,  Z a ,  when added 

to W a,  will be skewed with X [  b . . .  Z a] and will thus give zero. Thus (1) =~ 
(2) ----* (3) =~ (1). Hence (1) ¢" (2) ~* (3). 

Consider a function f ( ~ a ,  r i b ) ,  homogeneous o f  degrees q and p in ~a and 
~b, respectively, such that  

f ( ~ a  + ~Vt,la, ,,Qb) = f ( ~ a  ,rib) 

In the particular case when f(~ a, r? b) can be written as a polynomial 

f ( ~ a  Tlb) = fa . . .  c e . . . g ~  a ' ' "  ~c f l e  " " " ~g  

where f a . . . c e . . . g = f ( a . . . c )  ( e . . . g )  and f a . . . ( ce  . . . g) = 0. All such f a . . . c e . . . g '  s 

form an irreducible representation space of  the Lie algebra of  G L ( n ,  C ) ,  if 
f ( ~ a  r i o )  is singular outside some domain (inside which it is nonsingular). The 
f a . . .  e e . . .  g ' s  can be represented by the Young tableau 

< q , 
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If we are considering GL(2, C), ~a and 7? ~ are two-component complex 
vectors. In that case f(~a, @ )  satisfies the conditions for Theorem 1. Thus 
we can write 

f ( ~ a  ,ob) = f l ( X  ' ~b) = Xqg(,ob) (2.5) 

where g(rl b) is homogeneous of  degree (p - q) in 71 b, X = e a ~  nb. This 
method will be used often later. 

I f  one is dealing with SL(2,  C) then X = 1. In terms of  Young tableau, the 
previous Young tableau would become 

, (p  - q) , 

L 1 i 1 
This can be generalized for SL(n, C). 

The functions used for getting representations of  the Lie algebra of  GL(n, C) 
satisfy the condition that 

f ( w a  + ~ a ,  g b . . . . .  Z d) . . . . .  f ( w a  + IjZ a ' X b, . . . ,  Z d) = f ( w a ,  X b 

+ ~,yb . . . . .  Z a) = f ( W  a, X ~, + pZ b . . . .  , Z a) . . . . .  f ( w a ,  X b , . . . ,  Z a) 

and they are homogeneous in W a, X ~ . . . .  , Z a of  degrees p, q . . . . .  s. I f  they can 
be expressed as polynomials, i.e., 

f (  wa, x b ,  • " ",zcl) = f a ' " c  e . ' .g  k... m n . . ' p  wa "" " w c x e  " " " Xg  

X y k  . . .  y m z n  . . .  Z p  (2.6) 

where 

and 

f a . . . c  e..-g k . . -m  n- . .p  = f (a. . ,  c)(e.- .g) ( k . . .m )  (n... p) 

f a . . . c e . " g k . . . ( m n . . . p )  = f a ' . . c e . " ( g k . " m ) n ' " p  

= fa. . .  (ce...g) k . . .m  n . . .p  = fa . . . e  e.. .  (g[k. . .m]n.. .p) 

= f a . . . ( c l e . . . g k . . . m i n . . . p )  =fa. . . (c le . ' .gLk. . .  m) n . . .p  = 0  

All such fa-.- c e.-- g k..- m n..- p'S span an irreducible representation of  the Lie 
algebra of  GL(n, C). They can be expressed by the Young tableau 

_ _  

q 

P 

t . . .  ~ " '"  X a 
- -  wa 
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I f  one deals with SL(n, C) the Young tableau becomes 

( q -  p) ~ . . .  I X  a 

In terms of  the functions we have 

f (  W a, X b . . . . .  Z d ) = 7P g ( X  b . . . . .  Z d ) (2.7) 

and forSL(n,  C), "r = 1, 7 being eab. . .aWaX b "" "Z  a. 
For convenience I shall use the notation r/aa for the set of  vectors 

( w a ,  x a, . . ., za) ,  o~ running from 1 to n as doesa. Thus ~7 al is W a, r7 a2 is X a 
and so on until ~an is Z a. The equation (2.4) is equivalent to 

;(~o.) = f(kg&~) (2.8) 

where kg = 0 for a < b, = 1 for a = b and has some sufficiently small value for 
a > b. For such f ' s  it is easy to see that 

rTa~aaef(rl c'r) = 0 for a > ~ (2.9) 

= h~f(r~ e'r) for a = 

where 3a~ = O/O~) a~, i.e., Oao = O/OW a, etc., up to Oan = O/OZ a. We can write 
T as 

7 = ea... ce~... ~ 7? a~ " • • ~CT/nZ (2.10) 

I shall now define the Casimir operators and then evaluate them for GL(2, C), 
GL(3, C) and GL(4, C). 

3. Casimir Operators 

The canonical generators are defined by 

K~a = ~ao~Or7 bc~ = rlt'°~ao ~ + n6ba (3.1) 

All contractions of  these will give Casimir operators. Thus 

=. i v b  T / ' c ~ a  KI = Ka' K2 KabK~, K3 l~,a*+,b*Xc, etc. 

are Casmlir operators. The set {Ki} (i = 1 . . . . .  n) are linearly independent 
Casimir operators, all other Cash-air operators may be expressed in terms of  
these. 

It is easily seen that the functions defined by (2.9) are eigenfunctions of  
the Casimir operators by commuting the appropriate r~a~'s past the abe's [so 
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that (2.9) can be used] and adding in the extra term. In fact it is for this reason 
that the representation was chosen to be of  the form satisfying (2.9). 

Consider the case of  GL(2, C). Here we have only the Casimir operators to 
work out: 

Klf(r~ b~) = ('flaa~)ae e + 28aa)f(r/b~) = + 4 f(~b~) 

= (hi +h2 + 4)f(n b~) (3.2) 

K2;(nc ) = = + 

Using (2.9) we can write 

K2f(~ cT) = (2K1 + habac~r~aC~+ Oaxr~bxr~aY~by)f(r~ c't) 

where x < y and where haaa,~r~ aa stands for (b a 1 ~al) h 1 +" " " + (3anrtan)hn • 
Now we have 

/ 

\ x<y / 
since t)ax'dby = ~byt)ax. Using (2.9) again, with x < y ,  we have 

(77 bx,aY~byaax)f('flCT ) = (TlbXOby glaYOax -- ~ ~aX~ax)f(,c"l ) 
y>x 

I shall write 
n 

E 
x < y = l  

for 
n n - - 1  

2 2 
y = x + l  x = l  

Thus we have 

K2f(r~c.r) = 2K 1 + 6a ~ ha + h 2 + (by - hx) f(~c'r) 
e~=l ce=l x < y = l  

= (8 + 3hx + 5h2 + h~ + h~)f(rl c'r) (3.3) 

The Casimir operators for GL(3, C) and GL(4, C) are worked out and given 
in the Appendix. The expressions for the Casimir operators Kq rapidly become 
too cumbersome for higher values of n and larger values of q. The situation 
becomes much more manageable if we replace the degrees of  homogeneity by 
what I shall call "numbers of  homogeneity" defined by 

Ni = hi - i + 1 (3.4) 
Now for GL(2, C) we get 

2Kxf=  [3 + (N1 + N 2 ) ] f  (3.5) 

2 K 2 f :  [4 + 3(NI + N 2 ) + N ]  + N 2 ) l f  
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For GL(3, C) we get 

3Kxf 

3K2f 

3Kaf 

ASGHAR QADIR 

= [6+(NI+N 2+N3)]f  

= [I0+ 4(N 1 +N 2 + N a ) ] f  

= [15 + 10(Na +N2 +N3) + S(N~ +N 2 +N~) 

+ (N1N= +N2N3 +NAN1) + (N13 +X2 3 +N3)]f  (3.6) 

For GL(4, C) we get 

4Klf= [10 + (N1 +Nz +N3 +N4)lf  

*g~f= [20 + 5(N1 +N2 +N3 +N4)+(N] +N~ +N~ +N~)]f 

4K3f= {35 + 15(N1 +Nz +N3 +N4) + 6(N~ +N~ +N~ +N~) 

+ [NI(N2 +N3 +N4) +N2(N3 +N4) +N3N4] 
3 

+ (N~ + Y 3 + N3 + ia4)}f 

4K4f= {56 + 35(/1 +N 2 + / 3  + / 4 )  + 21(/~ +N~ + i ]  +i~]) 

+ 6 [NI(N2 +N3 +N4)+N2(N3 +N4) + N3Na] 

+ [N2(A~ +N3 +N4) +NZ(N3 +N4) +N~N4] 
+ [Nt (N 2 + X~ + U~) 

+Nz(N ~ +N24) +N3N~] + 7(N31 +U 3 +N~ +Na4) 

+ (N41 + N42 + X 4 + N4)}f (3.7) 

The eigenvalue expression of the Casimir operators can be still more simply 
expressed as symmetric combinations of the numbers of homogeneity: 

n n 
S1 = ~ Ni, $2 = ~ N?, etc. 

i=1 i=1 

2Klf= (3 +S1) f 

2K2f= (4 + 3S 1 + S2)f 

3Klf= (6 +$1) f 

3K2f= (10 + 481 +$2) f 

3K3f = (15 

4Klf= (10 

4Kzf= (20 

4K3f= (35 

4K4f = (36 

+ 10S1 + 1e22ol + 4½S2 + S3)f 

+Sl)f 
+ 5S~ + S~) f  

+ 15S1 +L¢22~1 -l-5½82 + S 3 ) f  

X 3 6~$3 + S4)f +35S 1 +3S~+3S1 +18S 2 + (3.8) 
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To appreciate the simplicity of these results, compare the 4Kq with the corre- 
sponding values for U(2, 2) given by Tsu Yao (1967, 1968). I shall now con- 
sider the effect of restricting to SL(n ,  C)  from GL(n,  C). 

4. Res tr ic t ion  to SL(n ,  CJ 

The formalism given earlier can be used to get the Casimir operators when 
the group is unimodular instead of general, i.e., for SL(n ,  C)  instead of 
GL(n,  C),  by making the canonical generators traceless and defining the Casimir 
operators as contractions of the new generators. Calling the canonical generators 
(SK)ba, we have 

(SK)aa = Kaa _ c b (1 /n )Kc6a  

(SK1)  = (SK) a = 0 

As an example, consider the case of n = 4. 

(SK)2 - a 1 a a 1 a - (Kg - -4Kt 8"a)(Ka = K2 , z - ~K 18 b) -- a;K1 

(4.1) 
(4.2) 

(4.3) 

(SK) 3 = (Kaa J. b c iv- 6c',,,wa 1 a 1 3 
- 4 K l ~ a ) ( K b  - "4.~Xl bYl.-°'c -- ~;6c) =K3 - ' ~ K 2 K 1  + 2K1 

(4.4) 

(SK) 4 = (Kaa _ ¼K, faa)(K~ _ .4K 8b)(KcC a - -  .~Sc)(K d a - -  "4~d)1 a 

a 2 (4.5) 
= K 4  - K3K1 + 2 K 2 K  1 

The reader will have noticed that the Casirnir operators of the unimodutar 
case are quite complicated. 

5. The S y m m e t r y  Propert ies  o f  the  Casimir Operators 

In Section 3 the Casimir operators of GL(2, C),  GL(3 ,  C),  and GL(4 ,  C)  
were shown to be symmetrical in the numbers of homogeneity of the eigen- 
functions of the operators. The proof that the Casimir operators of GL(n,  C) 
are symmetric in the numbers of homogeneity (which will be presented now) 
depends on the functions being singular somewhere, but having a domain 
over which they are nonsingular. 

Consider a function 

f (~a~)  = f ( w a  . . . .  , Z ~) (5.1) 

such that 

f ( ~ a ~ )  = f (@aa)  where ~laa = (k~ + 6~)r? a~ 

k ~ = 0  i f a > ~  
(5.2) 

= some small constant if ~ </3 
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Theorem 1 can be used because of(5 .1) :  

f ( W  a . . . .  , Z d) = g ( W  [a . . . . .  Z d], X p . . . .  , Z a) (5.3) 

where f is homogeneous of  degrees h 1 . . . . .  hn in W a . . . .  , Z a, respectively. 
Hence we can write 

f ( W  a . . . . .  Z d) = 7 h' F 1 ( X P ,  . . ., Z r) (5.4) 

where 3' = ea... a I41 la • .  • Z a ] where F1 is homogeneous of  degrees h 2 - h 1, 
• . . ,  h~ - h 1 in X p  . . . . .  Z ~, respectively. Consider an F 2 ( X P  . . . .  , Z ~) with 
the same degrees of  homogeneity as F I ( X P , . . . ,  Z r) and with appropriate 
singularities around which one can perform contour integrals. We can then 
define [as was done for SL(2, C) by R. Penrose (1967, 1968, 1973)] 

F ( w a  . . . . .  Z p) = 7h~ f F2(Wp + ~k2Z p . . . . .  y r  + ~nZr) d~ 2 . . . . .  d~tn 

(5.5) 

This can be written as 

F(rl  a°~) = f f (r l  la&) d~,2 . . . . .  d~.n (5.6)  

where r/lad -Am- l&Baa., ( 00 01) 
A ~ =  0 0 - . . 0  )~ 

1 0 " -  - 0 ) , 3  

0 0 . . ' 1  (5.7) 

where 7/2a& = A ~ 7  ac~ 

t 
o o  

a~a= o o -o 

1 0 • -" 0 X3 

0 0 ' ' "  1 ~k n 

(5.11) 

Clearly Ka a is not affected by transforming r/am by A~ & as we shall have 
la& = V ~ O a ~  where ~la~Xt3rra ^10~ = 6~. Thus 

Xa ~ = ~ b ~  = ~ 1 ~ , ~  = k ~  (5.8) 

Similarly we define 

G(W a . . . .  , Z a) = y'~' f F 2 ( Z  a, X b + )~3Zt', . . ., Y~ + •nZ a)  d~.3 . . . . .  dXn 

(5.9) 

which can be written as 

G(~ a'') = f f(r/2a&) d~k 3 . . . . .  d~. n (5.10) 
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As before, Ka b is not affected by transforming 77 aa by A~ ~. We have the relation- 
ships 

M&v~" = 6~6 i ( i , j  =1,2) (5.12) 

I shall now show that the numbers of homogeneity o f F  and G are permu- 
tations of the numbers of homogeneity o f f  and that they satisfy the condition 
(2.8). I shall then prove that F and G have the same Casimir operators as fand  
hence that K is symmetric in the numbers of homogeneity 

F(wa  . . . . .  A Z  a) = 7h, A~,  f F2(W p + AX2Zp  . . . . .  y r  

+ AXn Zr )  dX2 . . . . .  d)kn 

Change the variables hi to X) = A~k i. Then 

F ( W a , . . . , A Z  a) = ~h, A h l - n + l  f F2(NP + X2Z p . . . .  , y r  

t r t 
+ XnZ ) dX2 . . . . .  dX'n = A h ~ - n + l F ( W a , . . . ,  Z a) 

. . . . .  B y C , B Z  a) = 7h,B2h, f F2(  Wp + BX2Z p, . . . ,  F (W a 

x B [ y  r + ~kn Z r  ] ) d)t 2 . • • dXn 

(5.13) 

Now F 2 is homogeneous of degree h n - h 1 in y r  + X n Z r  Since there are now 
only n - 2, X's to be changed to X's, 

F( Wa . . . .  , B YC, B Z a )  = Bhn + h~- n + z F (  wa . . . .  , Ire, z d )  

F ( W  a . . . .  , B y c , z  a) = Bhn+'F(Wa,  . . ., Y c , z a )  
(5.14) 

Similarly, we can continue to 

F ( W a , D X  b . . . . .  Z cl) = D h 3 + I F ( W a , X  b . . . . .  Z ct) (5 .15)  

F(EW a, X b . . . .  , Z d ) = Eh2 + I F ( W  a , x b  , . . ., g d) (5.16) 

Thus, if the numbers of homogeneity of fare  ( N 1 , . . . , N n ) ,  the numbers of 
homogeneity of F are ( 2 ~ , . . . ,  Nn,  N1 ), i.e., cyclic permutations of N1 . . . .  , Am. 

G(wa . . . .  , A Z  d) = ,~h, Aht  ~ F 2 ( A Z a , X  b + •3zb . . . .  , y a  
(5.17) 

+ ~_n Z d )  d~k 3 . . . . .  d~ n = Ah~-n+2G(W a . . . . .  Z d) 

G(Wa . . . . .  B y e ,  Z a) = Bhn+l G(Wa . . . .  , y e ,  Z a) (5.18) 

G(Wa, D X  . . . .  , Z  a) =Oh3+lG(Wa,Xb  . . . . .  Z a) (5.19) 

G(EW a, X b . . . . .  Z d) = E h' G(W a , X b . . . . .  Z d) (5.20) 

Thus the numbers of homogeneity of G are (N1, N 3 , .  •. ,  Nn ,  A~), i.e., leaving 
N 1 alone, cyclic permutations of N2 . . . .  , N n . One could similarly start with 
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functions having the same homogeneity degrees as F or G and get further permu- 
tations of  the Ni's: 

F(Wa . . . . .  y e  + k Z  c, Z d) = ~h~ ~ F2(WP + X2Z p . . . .  , y r  + k Z  r 

+ ~kn Zr )  d~k 2 . . . . .  d~t n 

Defining a new 3, n = ~t n + k ,  d~k n ~- d~k n . Thus 

F(W a . . . .  , y c  + k Z  c, Z d) = F ( w a ,  . . ., y c ,  Z d) (5.21) 

To see how this works for other combinations it is convenient to consider, as 
an example, GL(4,  C).  Then from 

F(Wa, X b + k Z  a ' y c ,  Z a) = F(IW + k Z  a , X b , y e ,  Z a) = F(W a ' X b ' y c ,  Z d ) 

(5.22) 

follows as before: 

F ( w a ,  X b  + k y b ,  y c ,  Z d) = 7n, f F2(wa  + X2Z a, X b k y  b XaZ b, + + y c  

+ ~ z O  d~=. d~3 ^ alL, 

Using (5.21) we get 

F(wa  X b + k y b ,  y c ,  Z d) = 7h, ~ F2(Wa + ~2Z a, X b  + (?'a - kX4) Z b ,  y e  

+ ~ , Z ° ) d ~ 2  . d~ 3 . d ~  

Defining X~ = X3 - kX4, we get dX~ = d~t 3 - kdX4. Now we have dX4 ~ dX4 = 0, 
hence dX~ . d~.4 = dX3 ^ dX4. Thus 

F ( W a , x b  + k y  b, y e , z d  ) = F ( W a , x  b, Yc ,za)  (5.23) 

Similarly 

F(Wa + k y a ,  X b ' r e ,  Z d) = F(W a, X b ' y c ,  Z a) (5.24) 

F(wa  + k X  a, X b ' y c ,  Z a) = 7h, ~ F2(W a + k X  a + ~k2za, X b + ~k3zb y c  

+ ~.4Z e) d3,2 ^ dTt3 * d~4 = 7 ht ~ F2(W a + (~2 - k~,3) Za,  X ~ 

+ XaZ b, y c  + X4ZC)dX2 ^ dX 3 ^ dX4 

Defining ;X~ = X2 - k~,3, it is clear that we get 

F(Wa + k X  a ' X b ' y c ,  Z a) = F(Wa,  X b ' r e ,  Z d) (5.25) 

Similarly for G( W a, X b , ]re, Z d) in GL(4, C) we get 

G(wa+ k Z  a, X b ' y e ,  Z d) = G(wa + k y a ,  X b ' y c ,  Z d) = G(W a 

+ k X  a ' X b ' y c ,  Z a) = G(wa,  X b ' y e ,  Z a) (5.26) 
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as we have W a appearing only in 7 h~ and hence skewed with X b, yc  and 
Z d. Also 

G(wa, X b, yc  + kZ c, Z d) = G(Wa, X b + kZ b ' yc ,  Z a) = G(wa, X b ' ye ,  Z d) 

(5.27) 

as in the proof of (5.21). 

G(Wa, X b + k y b ,  yc ,  Z d) = a(wa,  X b ' yc ,  Z a) (5.28) 

as in the proof of (5.23). 
Hence 

Theorem 2: I f f (n  aa) are homogeneous functions satisfying (2.8), the 
functions 

G(~ ac~) = f f072aa) dX 3 dXn 

satisfy (2.8), and their numbers of homogeneity are permutations of 
the numbers of homogeneity off(rTaa). 

Since Ka b is unaffected by the transformations ~7 a~ --> ~ia~ (i = 1 ,2 ) ,  we see 
that the eigenvalue o f f  is the same as the eigenvalue off .  Similarly for G. 

Theorem 3: nKq are symmetric in the numbers of homogeneity for all 
values of n and q. 

Writing down the most general form for the eigenvalues of nKq in terms of 
numbers of homogeneity of its eigenfunctions, so that it is symmetric in them, 
we have 

( ~.~= q q-- 1 
nKqf(r~aa) = ~ Kq(p)mf + ~ 2 

ip=O i=2 rlr~"'ri=l "" " P] 

Kq(p...pi) NrP] " " " N~i)  f (vaa)  
~ P < q - i + l  

(5.29) 

where Kq(p) and Kq(p~ ...pi) are combinatorial factors given by 

n +q - 1) 
Kq(pi ... tO = q _ si (5.30) 

where 

i 
si= ~ P], Kq(p,)=- Kq(p) 

]=1 
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This may be seen to follow from the number of ways the canonical genera- 
tors can be commuted. 
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Appendix 

From now on I shall write finstead off(r/c~). Also, to simplify the calcu- 
lations, I shall put terms that are already calculated (or may easily be calculated) 
into ( ) brackets and ignore them until the end of the calculation. I shall now 
work out the Casimir operator of GL(3, C): 

K1 f = (~aa~.laa)f= a a (*a~ + ~'~Oa,~)f 

-- 3 x 3 +  ~.. h~ f = ( 9 + h l  +h2 +h3)f (A1) 
a = l  / 

K2f  = ( ~ , ~ t ' ~ b ~ v ' ~ ) f  = (~0~ ,~ '~  + ~ V b ~ a % b ~ ) f  

= ((3K1) + ha~aa~ aa + Oax~bXITaYOby)f (X <y) 

= ( ~  ~ h,~(3 +ha)~+ ( ~ = 1  / /  \X<y=l (hy-hx)~) f 

K2f=(27 +4h 1 + 6h2 + 8h3 + h 2 + h 2 + h2)f (A2) 
_ b e a 3 '  - K 3 f  - (K aK b~cy ~ ) f -  ((3K2) + KbaOb~rlct~rla3'~c~/)f 
= (h~Kb~b~? a~ + K~Obx~CXvayOey)f (X < y )  

= ( ( ~ l  h~Kl~ + h~Oaa~Tba~a~3b~ + {A }) f 

2 as (X = (h~aaa7 ? + hyOax~bx~aY~by)f <y) 

= ( ~  ~ h2(a +ha)~ + ( ~ hy(hy - hx)~) 1 x < y = l  

Af = (()aa'r'fb°~ObxT?CXll ay Ocy)f 

= (~aa~'tba~lcx~'taYacyObx + Z Oao~7"tba~aYaby)f 
x<y  

= (Saot'Qcx,QaY~cy'l~b°t~bx -- ~ayTibx~aYObx 

+ ~, hyaayrTaY+ ~, aawrlbwrtaYa~y)f ( w < y )  
x<y x<y 
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= Ihxrtaxrlex??aY~cy + ~av'l,lcx~aY~cy'ObV~bx 
k 

-- ~ x < ~ y = l h x ( h y + 3 ) ~ + ( x < ~ = l h y ( g + h Y )  ) 

+ 2 ( h y - h w )  f ( v < x < y )  
x, w y=l 

= =l(hxhy - hx + E (hv - hx f 
x / \ v < x < y = l  

K 3 f =  (81 + 13h 1 + 25h2 +43h 3 + 5hi + 8h~ + l lh~ + h l h  2 

+ h2h 3 + hah ~ + h 2 + h~ + h~)f  (A3) 

I shall now work out the Casimir operators of GL(4, C) (cf. Qadir, 1971): 

a s  as - ( 4  4 a) K l f = ( ~ a c ~ r l a s ) f = ( 6 a 6 s + r l  Oac~)f- x4+  ~ h 
~=1 

=(t6+hl + h2 +h 3 + h 4 ) f  (A4) 

K 2 f  = (KbaObt3na~)f = ((4K1) + Oasrlb%'la~Obt3)f 

= (hsOaot~7 as "1- Oax~bX~aY~by)f 

( ( 4 ) )  ~ 4 )~) 
= ~ = t h s ( 4 + h s  + x<~y=l (hy-hx  f 

K 2 f  = (64 + 5hl + 7h 2 + 9h 3 + 1 lh4 + h~ + h~ + h~ + hl)f 

K a f  = (KbaKebaerrlaT)f= ((4K2) + Kba~b~rlct~aT~c.r)f 

= (h~Kba~bt3~ + KbOa bx~ cx 77aO cy)]'~ 

= ~ ht3K + ht3~ao~rlbarlafl~b(3 + < A  > f 
t3=l 

= ( h 2 0  _ a s  e~ aol't! + hyOax~bXrlaYOby)f 

= ~(4 +hs + hy(y - hx f 
X =1 

(aS) 

A f  = (O,~srtb%lc:%'~YocyObx + ~ Oa~r/bsnar3~y)f 
x<:y 

= (Oas,QCx,oaYOcy'Qb~Obx -- Oay,QbY'rlaYObx 
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+ ~ hy~ay~ ay+ Z ~awITbw~aY~bY)f 
x<y X<y 

= (hx~)ax~CXTlaY~cy + ~av~CX'o ay ~cy'O bV~bx)f 

- [ (  x<~=l hx(hy + e)~ + (x<~y=lhy(4 + hy)~ 

+ _  Z (hy - hw 2 
\w,x< y=l 

= [(X<~y=l hx(hy-hx)~ + (v<x~y=l(hv-hx)~] f 

K3f= (256 + 21h 1 + 35h2 + 55h3 + 81h4 + hi(h2 + h3 + h4) + h2(h3 + h4) 

+ h a h  4 + 6 h  2 + 9 h  2 + 12hi + 15h 2 + h~ + h~ + ha3 + h34)f (A6) 

K4 f = (KbaK~,KdOa~ ,qa6 )f  = (( 4K a ) + KbaK g be,yrla,yBa8 3d 6 )f 
b c a'y +KbaKCbacyrldyrlaZaaz) f = (h,rKa'Kbac~ ~ 

=(~,,[~_lh,.yK2~'l-h,ygba~bl3"Qct3~a"Y~c,y+(BOf 

- 2 b at3 
- (ht3K aob~r? + hyKbaObx~CXr~aYOcy)f 

= ((3=~1 h~Kl~ +h~oaa~bc~rla~3Dbt3 +(AOf 
3 aot =(h,~bac~ + h~,axcdlY'~rlX~Oy~)f 

= [(o~=l h~(4 + ha)~+~x~y=lh2(hy - hx)~] f 

Af =( hyOaarlbarlcxrlayOcyobx + x< y hyOaa~lbal?aYObY) f 

= (hyhxOax'rlbx'OaYOby + hyOaw'Obw,ocx't'laYObx~)cy 
\ 
- ~, hxhyOayrl ay + ~ h2aayrl ay + ~ hyOazrlbZrlayaby} f 

x<,y x<y x<y / 
(w < x  < y , z  < y )  

=[(x<~y=lh2(hy+4)~+~z,x~<y=lhy(hy-hz)~ 

-~x<~y=lhxhy(hy +4)~+(x<~y=lhxhy(hy-hx) ~ 
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"~.a,,t, xn ~ Ucz+(D) f 
y y<z 

(~y<~z=l hyKI~+ ~y<z hz~aa~b°~aZ~bz+(C))f  

41 

~ ~ h2zOazrlaz+ ~ hz~ax~bX~az3bz~f 
y<z Y'<z 

= ~ hZz(h2 +4 + hz(hz - hx) f 
Y<z=I x,y<z=l 

4 
c;= E 

x,y<z 

= hz~azr? az + 
\x,y<z 

4 
~ao~'~blx'OaZObz + E 

YKz 
~)aoftballcx'gldZOcz~)bx) 

4 ~bw~az~b, + ~ a~*~a~ 
x,y<~z Y<2 

0 ~bx~az 0 ) 
, , ~ "  - b~ f ( w < z )  Oc~Tb~ob~- 

y<z 

= ~ hz(hz + 4 + Y. (hz - 
x,y<z=l ,,w,x,y < z = 1 " 
4 4 

hxOaxr~Cxr~aZ3cz + ~_, Oaw~CxpaZOcz'QbWObx 
Y<z Y<z 

2 hx(hz+4) f (w<x)  
x,y<z~l 

x,y<z=l w<x,y<z 

+ ~ 77CXbbxr?aZOczpbWOaw] f 
y < z  ] 

f( >] ' E (hw - h~) f 
x;x,y < z= 1 

rf x 3bx ~?bZ O ez 
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Dr= ( hyKba~by77dy~aZOdz - ~ hyKba~bz~, az 
Y<z 

+ Kb~bx'OCX'ridY T-iaZ ~cy~dz ) f (X < Y )  / 

~ hyKba~aZ~bz + hy~aa77ba~dy~aZ~dz~by -- ~. hyKba~TaZabz 
y<z y<z 

-- ~ Z ~ ~ ~boL~dy~az~ ~ hyK1 + ~ aa 't ,t by dz 
y =1 x<y 

+ ~ 7)ba"ocx',~clY',~az~ ~ ~ 1 
aa. '~ ,~ ,I cy dz bxl  f 

/ 

+ hy~ay17 "17 Obz + hy~ax~lbxrlcYr~aZObyacz Df= -y~<z h~azr laz  2 by az 

+ Z ~ ,,.,bw~ey~azT~ ~aw't , ,t UbyUcz-- Z hy~az77 az + ~ hyaay 
x<y x<y x<y 

(w <y,  x <y) 

7-l bY,,~az O ,i bz  + ~ h y a a z r l  az - ~ hxaay 
x<y<z x<z 

.flby'Oaz ob z + hx~ax'Ocx'fldy~aZacy~dz + 

r~bv~cx~cly~azo ~ a t av . ,t q ,¢ bx cy dzJ f (v <~ X) 

= - -  

y < z = l  

x< y< z=l w,x< y ; y<z=l 

+ Z hy(h~ - hx) 
x<y<z=l 

+ Z ( h y - h w )  f 
v<x~ y < z : l  
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= [1024 + 85hl + 155h 2 + 258h 3 +499h4 +hl(8h 2 + 10h 3 + 12h4) 

+ h2(12h3 + 14h4) + 16h3h4 + 27h~ + 53h22 + 91h~+ 144h24 

+hl(h~ + h~ + h~) + h2(h ~ + h~) + h3h24 + h~(h2 +ha +h4) 

+ h~(h3 +h4)+h~h4 + 7h~ + l lh  3 + 15h ] + 19h~ 

+h 4 +h~ +h~ +h4] f  (A7) 
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